Transistor

Transistor #

The fundamental active component for amplification and switching. Breadpad supports BJTs (Bipolar Junction Transistors), MOSFETs, JFETs, and more with full SPICE model customization.

Basic Properties #

  • Terminals: 3 (varies by type)
    • BJT: Collector, Base, Emitter
    • MOSFET: Drain, Gate, Source
    • JFET: Drain, Gate, Source
  • SPICE Designation: Q (BJT), M (MOSFET), J (JFET)
  • Layout: Fixed 3 consecutive tie points

Supported Transistor Types #

Bipolar Junction Transistors (BJT) #

  • NPN: Current flows from collector to emitter
  • PNP: Current flows from emitter to collector
  • Lateral PNP: Specialized PNP for ICs

Field Effect Transistors (FET) #

  • N-Channel MOSFET: Enhancement and depletion modes
  • P-Channel MOSFET: Enhancement and depletion modes
  • N-Channel JFET: Depletion mode only
  • P-Channel JFET: Depletion mode only

Specialized Types #

  • MESFET: Metal-semiconductor FET
  • IGBT: Insulated Gate Bipolar Transistor

SPICE Model Parameters #

Breadpad allows full customization of SPICE parameters:

Common BJT Parameters #

  • IS: Saturation current (1e-14 A)
  • BF: Forward beta/gain (100)
  • BR: Reverse beta (1)
  • VA: Early voltage (100V)
  • CJE: B-E junction capacitance
  • CJC: B-C junction capacitance
  • TF: Forward transit time
  • TR: Reverse transit time

Common MOSFET Parameters #

  • VTO: Threshold voltage (1V)
  • KP: Transconductance parameter
  • LAMBDA: Channel-length modulation
  • RD: Drain resistance
  • RS: Source resistance
  • CGS: Gate-source capacitance
  • CGD: Gate-drain capacitance

SPICE Netlist Format #

BJT example:

.MODEL Q1_MODEL NPN (IS=1e-14 BF=100 VA=100)
Q1 collector base emitter Q1_MODEL

MOSFET example:

.MODEL M1_MODEL NMOS (VTO=1 KP=0.1 LAMBDA=0.01)
M1 drain gate source bulk M1_MODEL

Common Transistor Models #

Small Signal BJTs #

2N3904 (NPN)

  • IS=6.734e-15
  • BF=416.4
  • VA=74.03
  • General purpose amplifier

2N3906 (PNP)

  • IS=1.41e-15
  • BF=180.7
  • VA=18.7
  • Complementary to 2N3904

Power BJTs #

2N3055 (NPN)

  • IS=2e-10
  • BF=50
  • Power amplifier, 15A

Small Signal MOSFETs #

2N7000 (N-Channel)

  • VTO=2.0
  • KP=0.15
  • 200mA switching

BS250 (P-Channel)

  • VTO=-3.0
  • KP=0.1
  • Complementary to 2N7000

Power MOSFETs #

IRF540 (N-Channel)

  • VTO=4.0
  • High current capability
  • Low RDS(on)

Circuit Applications #

Amplifier Configurations #

Common Emitter/Source

  • High voltage gain
  • Phase inversion
  • Medium input/output impedance

Common Collector/Drain

  • Unity voltage gain
  • High input impedance
  • Low output impedance
  • Buffer/follower

Common Base/Gate

  • Unity current gain
  • Low input impedance
  • High output impedance
  • High frequency

Switching Applications #

  • Digital logic gates
  • Power switching
  • Motor control
  • LED drivers
  • Relay drivers

Analog Applications #

  • Differential pairs
  • Current mirrors
  • Voltage references
  • Oscillators
  • Active filters

Biasing Considerations #

BJT Biasing #

  • Fixed bias: Simple but temperature dependent
  • Voltage divider: More stable
  • Emitter feedback: Good stability
  • Collector feedback: Moderate stability

MOSFET Biasing #

  • Gate voltage: Set VGS > VTO
  • Self-bias: Source resistor
  • Voltage divider: Fixed gate voltage
  • Current source: Stable operation

Temperature Effects #

BJT Temperature Dependencies #

  • VBE: -2mV/°C
  • Beta: Increases with temperature
  • Leakage: Doubles every 10°C

MOSFET Temperature Dependencies #

  • VTO: -2 to -4mV/°C
  • Mobility: Decreases with temperature
  • RDS(on): Increases with temperature

Design Tips #

  1. Operating Point: Ensure proper DC bias before AC analysis
  2. Thermal Runaway: Use emitter/source degeneration
  3. Frequency Response: Include junction capacitances
  4. Switching Speed: Consider charge storage effects
  5. Power Dissipation: P = VCE × IC (BJT) or VDS × ID (FET)
  6. Safe Operating Area: Check SOA curves

Parameter Extraction #

To match real transistors:

  1. Measure DC characteristics
  2. Extract IS, BF/VTO from curves
  3. Add capacitances for AC response
  4. Verify with transient analysis

Simulation Tips #

  1. Convergence: Start with default models, add complexity
  2. Initial Conditions: Set IC for faster convergence
  3. Temperature: Use TEMP parameter for thermal analysis
  4. Substrate Connection: Connect MOSFET bulk properly
  5. Model Levels: Higher levels = more accuracy, slower simulation

See Also #